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Results from data processing
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Next, analysis of the quantitative metabolite information ...
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Metabolomics data analysis

 Goals

— biomarker discovery by identifying significant features associated
with certain conditions

— Disease diagnosis via classification

* Challenges
— Limited sample size
— Many metabolites / variables

 Workflow

pre-treatment unlvarlz}te multlvar%ate mach}ne
analysis analysis learning




Data Pre-treatment



Normalization (I)

 Goals

— to reduce systematic variation

— to separate biological variation from variations introduced in the
experimental process

— to improve the performance of downstream statistical analysis

* Sources of experimental variation
— sample inhomogeneity
— differences in sample preparation
— 10n suppression



Normalization (II)

* Approaches

— Sample-wise normalization: to make samples comparable to each
other

— Feature/variable-wise normalization: to make features more
comparable in magnitude to each other.
* Sample-wise normalization
— normalize to a constant sum
— normalize to a reference sample
— normalize to a reference feature (an internal standard)
— sample-specific normalization (dry weight or tissue volume)

* Feature-wise normalization (1.e., centering, scaling, and
transformation)



entering, scaling, transformation

Class Method Formula Unit Goal Advantages Disadvantages
I Centering )'f,;,- = X - Xy (o] Focus on the differences and not the Remove the offset from the data When data is heteroscedastic, the effect of
similarities in the data this pretreatment method is not always
sufficient
, L X % . . .
II Autoscaling Xy = ) Compare metabolites based on All metabolites become equally Inflation of the measurement errors
Sy correlations important
o HKig = %
Range scaling Kij = ) Compare metabolites relative to the All metabolites become equally Inflation of the measurement errors and
(X"mm Ytn ) biological response range important. Scaling is related to sensitive to outliers
biology
. x."j - }-‘i . . L -
Pareto scaling Xy = (o] Reduce the relative importance of large Stays closer to the original Sensitive to large fold changes
]sf values, but keep data structure partially measurement than autoscaling
intact
X - %) %,
Vast scaling ;{"}. - M ﬁ ) Focus on the metabolites that show small Aims for robustness, can use prior Not suited for large induced variation without
S 5 fluctuations group knowledge group structure
. 3 X X : : : : : .
Level scaling Xy = — -) Focus on relative response Suited for identification of e.g. Inflation of the measurement errors
*y biomarkers
_10
Ry = Iog(x,}-) . " O ) ) )
III Log . Log Correct for heteroscedasticity, pseudo Reduce heteroscedasticity, Difficulties with values with large relative
transformation X.u_; = AT )?' [0} scaling. Make multiplicative models multiplicative effects become standard deviation and zeros
additive additive
Woo = ‘ His
Power 4 ( 4 ) VO Correct for heteroscedasticity, pseudo Reduce heteroscedasticity, no

transformation

- _ ” hod
XJ}' = xij G

scaling

problems with small values

Choice for square root is arbitrary8




Centering

Converts all the concentrations to fluctuations around zero
instead of around the mean of the metabolite

concentrations
Focuses on the fluctuating part of the data

Is applied 1n combination with data scaling and
transformation



Scaling

Divide each variable by a factor
Different variables have a different scaling factor

Aim to adjust for the differences in fold differences between
the different metabolites.

Results 1n the inflation of small values

Two subclasses
— Uses a measure of the data dispersion
— Uses a size measure



Scaling: subclass 1

» Use data dispersion as a scaling factor

auto: use the standard deviation as the scaling factor. All the
metabolites have a standard deviation of one and therefore the data
is analyzed on the basis of correlations instead of covariance.

pareto: use the square root of the standard deviation as the scaling
factor. Large fold changes are decreased more than small fold
changes and thus large fold changes are less dominant compared to
clean data.

vast: use standard deviation and the coefficient of variation as
scaling factors. This results in a higher importance for metabolites
with a small relative sd.

range: use (max-min) as scaling factors. Sensitive to outliers.
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Scaling: subclass 2

* Use average as scaling factors

— The resulting values are changes in percentages compared to the
mean concentration.

— The median can be used as a more robust alternative.

12



Transformation

Log and power transformation

Both reduce large values relatively more than the small
values.

Log transformation
— pros: removal of heteroscedasticity
— cons: unable to deal with the value zero.

Power transformation
— pros: similar to log transformation
— cons: not able to make multiplicative effects additive

13



Centering,
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Log transformation, again

« Hard to do useful statistical tests with a skewed

distribution.
§ | II => g 15: III
0-.0’TI ‘l*#.—— Z:.-’Li iﬁ-—,_‘_

20-15-10 -5 0 5 10 15 20 25 30 35 40 45 50 55 80 -04 -02 00 02 04 05 08 10 12 14 186 18 20
FSH log(FSH)

* A skewed distribution or exponentially decaying
distribution can be transformed into a Gaussian distribution
by applying a log transformation.
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Univariate vs. multivariate analysis

* Univariate analysis examines each variable separately.
— t-tests
— volcano plot

« Multivariate analysis considers two or more variables
simultaneously and takes into account relationships
between variables.

— PCA: Principle Component Analysis
— PLS-DA: Partial Least Squares-Discriminant Analysis

* Univariate analyses are often first used to obtain an
overview or rough ranking of potentially important features
before applying more sophisticated multivariate analyses.

16



Univariate Statistics
I-test
volcano plot

17



Univariate statistics

* A basic way of presenting univariate data 1s to create a
frequency distribution of the individual cases.

i

Due to the Central Limit
Theorem, many of these
frequency distributions can be
modeled as a normal/Gaussian
distribution.

# of each

Height
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(Gaussian distribution

* The total area underneath each
density curve 1s equal to 1.

S
N =
[\ ] eeme=
SN
— 2 - 7
__ L _(%) Ly “\\;\\\ {
@(x) = —e N LANS
o227 :

mean = u

variance = 0

02 03 04

standard deviation = o

34.1% | 34.1%

0.0 041

https://en.wikipedia.org/wiki/Normal_distribution



Sample statistics

Sample mean: X= 1 E X,
n i=1

n

jance: ° = —— N(x - XY
Sample variance: S° = n—lZ(Xi X)

Sample standard deviation: S = \/?

20
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t-test (1)

* One-sample r-test: 1s the sample u,
drawn from a known population?

# of each

Null hypothesis H,: u = u,
Alternative hypethesis H,: u<y,

Test statistic: 7 = >0
S/ \/Z Height
Sample standard deviation: s = \/ LE(xi - )?)2 g:: |
n-1 i=1 0.30}
_ 0.25r
The test statistic ¢ follows a student’s t 2 0.20f

distribution. The distribution has -1 o

degrees of freedom. 0.05|
0.00




When the null hypothesis 1s
rejected, the result 1s said to be
statistically significant.

Two-Tailed
P-value = P(Z < —|zglor Z > |zo])
= 2P(Z > |zl)

Right-Tailed
P-value = P(Z > z)

The sum of
the area in

The sum of
the area in
the tails is the
P-value

the tails 1s the
P-value

t-test (II): p-value

Ko

CRITICAL VALUE

—

TEST STATISTIC

The area right
of z, 1s the

P-value

[EPAE) — " [rik]

Left-Tailed
P-value = P(Z < z;)

The area
left of z,,
is the

P-value
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t-test (11I)

* Two-sample f-test: are the two populations different?

U T T
Alternative hypethesis H,: u, - u, =0

Test statistic: ¢ = (%= %) - (s, -tt) iﬁi%iﬂ %ﬁiﬁii%ﬁiﬁi%ﬁi iﬁ ﬁ

> 2

S S
\/_1+_2

n,n,

* The two samples should be

Null hypothesis H,: u, —u, =0

density

independent.

X
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t-test (IV)

# of each

L.

Height

Equivalent statements:
* The p-value 1s small.

» The difference between the two populations 1s unlikely to
have occurred by chance, 1.€. 1s statistically significant.
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t-test (V)
il
et

° The p-Value iS blg

» The difference between the S
two populations are said <
NOT to be statistically **
significant.

Height .



t-test (VI)

 Paired r-test: what is the effect of a treatment?

e Measurements made on the same individuals before and

after the treatment.

Example: Subjects participated in a study on the effectiveness of a

certain diet on serum cholesterol levels.

After Difference

-1

N OV U W N =

201
231
221
260
228
245

200
236
216
243
224
235

+5

-5
-17
-4
-10

Hy,:u,=0
H, :u,=0
g_l/‘d

Sd/\/;

Test statistic: f =



Volcano plot (I)

Plot fold change vs. significance
y-axis: negative log of the p-value

x-axis: log of the fold change so that changes in both
directions (up and down) appear equidistant from the
center

Two regions of interest: those points that are found towards
the top of the plot that are far to either the left- or the right-
hand side.



-log10(p)

Volcano plot (II)
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Multivariate statistics

PCA
PLS-DA
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PCA (T)

 PCA 1s a statistical procedure to transform a set of
correlated variables into a set of linearly uncorrelated
variables.
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PCA (II)

* The uncorrelated variables are ordered in such a way that
the first one accounts for as much of the variability in the
data as possible and each succeeding one has the highest
variance possible in the remaining variables.

* These ordered uncorrelated variables are called principle
components.

* By discarding low-variance variables, PCA helps us reduce
data dimension and visualize the data.



The transformation matrix

P = [pl,p2’...

The transformation

Y =P'X =

Dis Doy, P, are called the 15t 274 and #™ principle

components, respectively.

, D)

Y1
Y2

Yn

-

PCA (II1)
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PCA (IV)

* Each original sample is represented by an z#-dimensional
vector:
S before transformation ['xl ’ XZ R 'xn ]

 After the transformation

— If all of the principle components are kept, then each sample is still
represented by an z#-dimensional vector:

Safter transformation [yl ’y2 > ’yn]

— If only m <n principle components are kept, then each sample will
be represented by an m-dimensional vector:

Safter transformation [yl’yZ’. . ’ym]



PCA (V)

* yare called scores.

* For visualization purpose, 7 is usually chosen to be 2 or 3.

* As aresult, each sample will be represented by a 2- or 3-
dimenational point in the score plot.

Principal Component Analysis (Scores)
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PCA (V)

* Loadings
Components

Variables Y Yo e Yn

X1 [P11__ P12 e Pin

Xo [P21 P22 | o P2n

Xn |Pnl  Pn2| T Pnn

Eigenvalues | A1 Ag o An
Eigenvectors | p; Do ‘o P

o [P:00 s [PasPs ][ Pus P | are denoted as points in the
loadings plot
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PC2
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Loadings plot for the top 25 varaibles
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Scree plot: variance vs. principle component number
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PLS-DA (I)

A supervised method to find a predictive model that
describes the direction of maximum covariance between a

dataset (X) and the class membership (Y)

Similar to PCA, the original variables are summarized into
much fewer new variables using their weighted averages.

The new variables are called scores.
The weighting profiles are called loadings.

PLS-DA can perform both classification and feature
selection.

Feature importance measure: VIP (Variable Importance in
Projection)



PLS-DA (II)

* Interpretation of the model

— R?X and R?Y

« fraction of the variance that the model explains in the
independent (X) and dependent variables (Y)

* Range: 0-1

~ Q%Y
* measure of the predictive accuracy of the model
 usually estimated by cross validation or permutation testing
* Range: 0-1
* > (.5 1s considered good while > 0.9 is outstanding
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PLS-DA (II)

* Note of caution
— Supervised classification methods are powerful.
— BUT, they can overfit your data, severely.

41



Machine Learning

Clustering
Classification

42



Clustering

Group similar objects together

Any clustering method requires
— A method to measure similarity/dissimilarity between objects
— A threshold to decide whether an object belongs to a cluster
— A way to measure the distance between two clusters
Common clustering algorithms
— K-means

— Hierarchical
— Self-organizing map

Unsupervised machine learning techniques

43



Hierarchical clustering (I)

. Find the two closest objects and merge them 1nto a cluster

. Find and merge the next two closest objects (or an object
and a cluster, or two clusters)

. Repeat step 2 until all objects have been clustered

m

N S T
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Hierarchical clustering (1I)

 Methods to measure similarity between objects
— FEuclidean, Manhattan
— Pearson correlation
— Cosine similarity

* Linkage: ways to measure the distance between two clusters

single complete centroid average
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1 1 [ —

Hierarchical clustering (I1I)

B
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Classification

Use a training set of correctly-identified observations to
build a predictive model

Predict to which of a set of categories a new observation
belongs

Supervised machine learning
Methods

— Linear discriminant analysis

— Support vector machine (SVM)
— Artificial neural network (ANN)
— k-nearest neighbor

— Random forest

— PLS-DA



Software Packages

MetaboAnalyst
XCMS
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For in-depth statistical analysis and data interpretation,

please make an appointment with a biostatistician.
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Thank you!



